Exercise 1.5.9

Determine the equilibrium temperature distribution inside a circular annulus ($r_{1} \leq r \leq r_{2}$):
(a) if the outer radius is at temperature T_{2} and the inner at T_{1}
(b) if the outer radius is insulated and the inner radius is at temperature T_{1}

Solution

The governing equation for the temperature in the annulus, assuming radial symmetry, is

$$
\frac{\partial u}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right), \quad r_{1} \leq r \leq r_{2}
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of r now.

$$
0=\frac{k}{r} \frac{d}{d r}\left(r \frac{d u}{d r}\right) \quad \rightarrow \quad \frac{1}{r} \frac{d}{d r}\left(r \frac{d u}{d r}\right)=0
$$

To solve the differential equation, multiply both sides by r.

$$
\frac{d}{d r}\left(r \frac{d u}{d r}\right)=0
$$

Integrate both sides with respect to r.

$$
r \frac{d u}{d r}=C_{1}
$$

Divide both sides by r.

$$
\frac{d u}{d r}=\frac{C_{1}}{r}
$$

Part (a)

Integrate both sides with respect to r once more.

$$
u(r)=C_{1} \ln r+C_{2}
$$

Apply the boundary conditions here to determine C_{1} and C_{2}.

$$
\begin{align*}
& u\left(r_{1}\right)=C_{1} \ln r_{1}+C_{2}=T_{1} \tag{1}\\
& u\left(r_{2}\right)=C_{1} \ln r_{2}+C_{2}=T_{2} \tag{2}
\end{align*}
$$

Subtract equation (2) from equation (1) to get an equation for C_{1}.

$$
\begin{aligned}
C_{1}\left(\ln r_{1}-\ln r_{2}\right) & =T_{1}-T_{2} \\
C_{1} \ln \frac{r_{1}}{r_{2}} & =T_{1}-T_{2} \quad \rightarrow \quad C_{1}=\frac{T_{1}-T_{2}}{\ln \frac{r_{1}}{r_{2}}}
\end{aligned}
$$

Solve equation (1) for C_{2}.

$$
\begin{aligned}
C_{2} & =T_{1}-C_{1} \ln r_{1} \\
& =T_{1}-\frac{T_{1}-T_{2}}{\ln \frac{r_{1}}{r_{2}}} \ln r_{1}
\end{aligned}
$$

The equilibrium temperature distribution is then

$$
\begin{aligned}
u(r) & =C_{1} \ln r+C_{2} \\
& =\frac{T_{1}-T_{2}}{\ln \frac{r_{1}}{r_{2}} \ln r+T_{1}-\frac{T_{1}-T_{2}}{\ln \frac{r_{1}}{r_{2}}} \ln r_{1}} \\
& =T_{1}+\frac{T_{1}-T_{2}}{\ln \frac{r_{1}}{r_{2}}}\left(\ln r-\ln r_{1}\right) \\
& =T_{1}+\frac{T_{1}-T_{2}}{\ln \frac{r_{1}}{r_{2}}} \ln \frac{r}{r_{1}} \\
& =T_{1}+\frac{T_{2}-T_{1}}{\ln \frac{r_{2}}{r_{1}}} \ln \frac{r}{r_{1}}
\end{aligned}
$$

Therefore, the equilibrium temperature distribution is

$$
u(r)=T_{1}+\left(T_{2}-T_{1}\right) \frac{\ln \frac{r}{r_{1}}}{\ln \frac{r_{2}}{r_{1}}} .
$$

Part (b)

If the outer radius is insulated, then $d u / d r$ must be zero there.

$$
\frac{d u}{d r}\left(r_{2}\right)=\frac{C_{3}}{r_{2}}=0 \quad \rightarrow \quad C_{3}=0
$$

The differential equation becomes

$$
\frac{d u}{d r}=0 .
$$

Integrate both sides with respect to r once more.

$$
u(r)=C_{4}
$$

Apply the second boundary condition to determine C_{4}.

$$
u\left(r_{1}\right)=C_{4}=T_{1}
$$

Therefore, the equilibrium temperature distribution is

$$
u(r)=T_{1} .
$$

